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A New Formulation of Backward Difference

Multistep Methods for Ordindry Differential

AlanM. Winslow
.

Consider the ordinary differential equation.
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“*=f(y,t);=dt

Linear

E@ations

(1)

&l-

to be integratednumericallyby a kui orderlinearmltistep method.

Choosing backward

have

.n+l
$ = j(lin

diffexmcing for applicationto stiffequationslwe

.

Comb. Ofyn+l, yn, ● ● ● , yn-k+l)= f(yn+l,p+l) (2)

n-k+lwheret , tn-k+2,. . . , tn+l ~present s~~~essive

sarilyequallyspaced,and 1 Sk sK, whereusuallyK =

The novelfeatureof our

n-1
the “history” arrayyn, y ,

(2). We use the extrapolants

formulationis the manner

times,not neces-

5or 6.

in whichwe store

. . . . Y‘-k+~ neededfor the lefthand side of

‘+l:(j= O, 1; ● “ ●, k) each obtained byiY
.)

fittinga jth
{1
n-1 ddegreepolynmii.alto.thej + 1 points ,y and evaluated

o
n+l

att=t . Theseexbapolantsare a naturalchoicebecausethey foxm a

n+lsequenceof successiveapproximationsto y .

We beginour derivationwith the usual.form of the Newtoninterpolation

m degree?forthe functiony(t) over the set
[
t~k -

polynomi~p”(t) ofk i)o

evaluatedat t:

y(t) = y[tol + (t - to) y[to, tll + (t - to)(t - tl) y[to,tl, t21

+*. . + (t - toyt - tl) ● “ “ (t - tk-l) y[to, tl, .,., tkl (3)

t ~e”(t)

= l&Q(t)+’keo(t)

.— —
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H- Y[to>● ● ● ,tj
1

.threpresentsthe 3 divideddifferencewhich satis-

fies the recursionrelation

y[to] = y(to)

y[to, ● “ “ , tn] =

‘he exvmrterm evaluatedat t

~e”(t) = (t - to)(t - tl) ●

~ppkg ~e tenprarily,

{}

‘ k+lnOlli& WeJ? ti o evaluated

Y[to? “ “ “ .-? tn-ll - Y[t~? “ ● “ , tnl
to-tn :

is given by2’

. . (t-tpy[to, tl, *”’, Tj, tl ‘

we write the next hi@er interpolation poly-

at t:

~+lyo(t) = #o(t) + (t - to)(t - tl) ● “* (t - q) Y[to, tl, ““*, ~+1 H4)

\

{{

Shifting the eval.tion point tO to ti the base set tO ti ~1 ,

q. (3) becollles

y(to) = pl(to)+~el(to) (5)

where

~el(to) =.(t. - t )(t
10

- t2) ““0 (t. - ~+1) y[tl, t2, “~’ , tk+l, to]

Using (5),we can rewrite (4) in the form

(t - to)(t - tl) “’” (t - tk)

k+ly ‘t) ‘ #o(t) + t [y(to)- phto)] (6) -
0~)

wherewe have made use of the symnetryproper@ of divideddifferences-

in permutingtheir arguments.

n+l .
ktthgt=t , ti=tn-l (i= 0$ 15 ● ** ,k+l), y(tn) =yn,

k?”(t)‘kyn+l’%+’l(to) ‘k?n-== ‘
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n+J.
k+ly =12’n+l+(tn+l - tn)(tn+l - tn-l) ““” (tn+l - tn-k) Yn

()
n (7)

(tn - tn%tn - tn-2) “““ (tn - tn-k-l) - p

(k= O,l,***
n+l

,K),whezey = Yn” From the solution yn and the ex-trap-

Olants $n at t
n+l= tn, we use (7) to form the successive extrapolants

k?
. . fort = tn+l. #.

We make use of (7) to rewritethe Newton

H
~ extrapolantform. Using the set yn+l-“k

0

interpolationpolynomial(3)

and evaluatingat t, we have
L J

t p+l

,#+l(t) = yn+l + * (jr+l-yn)+ (t-tn+’-)(t-tn) -(yn+l-lyn+l)
t -t (tn+l--tn)(tn+l-tn-l)

+. ..+ (t-tn+l)(t-tn) . . . (t-tn-k+z ~

(tn+l-tn) (tn+l-tn-l) “ ● “ (tn+%n++l)(yn+l-k-lyn+l),

(8)

and differentiating(8).weobtainour differenceapproximation’forthe

lefthandside of

.n+l
k?=

n+l
Y

n+l n+l n+l
- 2Y , Y

+ + “o” +
- k-~y

Atnx
n-3/2

+ Atn-% + At Atn+%+ ... + *tn+3/2-k

(9)

which is the desiredlinearccmbi.nationof

n+l
We inscxt (9) into (2) and solvefory ,

y(tn+l).

J
1

‘+l-ik indicated h (2).
:W kth 0

order approximationto

We adjustthe time step and the order k in order to controlthe local

truncation error

n+l n+l

kc =Y - y(tn+l)
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which,for a kti order scheme,is of ofier ( At)k+l. For this purpose we

n+l
@e use of the interpolation error ke , which, according to (5) is given

by

n+l n+l n+l
ke ‘Y. . -ICY

.
we - mite en+l

r k
in the fonn3

n+l
= (tn+l- tn)(tn+l- tn-b...(tn+~- tn-k-l) y(k+%

ke (k + l)!

n-k-1 n+l
where t <{<t. For equal time steps At, we have--

n+l
= (At)

k+l Y(k+l)(g)
ke

showing that,ke
[)

n+l l/(k+l)
‘+1 is also of ord~ (At)k+l. It can be sharn4 that ~e

n+l l/(k+l)

[1
differs from ~~ only by a factor which lies between 1.5 and 2,

which we shall omit.

Definingthe fractionalerror

n+l
Y

n+l
-G

6k = — Yn+l

we use 15kto control the time step and order in the

dkwith soti preassigned value 6., we calculate the

.-

1

folkdng way. Comparing

new time step At
n+3/2

which increasesor decreasesthe time step to try to maintain6k ~ 6..

,,

(lo)

For continuous f(y,t) this is usually sufficient, without having to repeat

a time step. ChangingAt everytime step in this mann~has led to nol

stabilityproblans. For cnxkrcontilwe canparethe numbers (60/6g)4+1

(k = k, kt 1) andcbose L in orderto maximizethe new time step.
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Another use of (8) is interpolation.To find the solutionat some

w

time t~, (tn < tp < tn+l),we

by using (.8)with t = tp.

An importantappli=tion

th
interpolateto k order betweenyn

of ~. (9) is to chemical.kinetics,

which the righthard side of (1) takes the form

f(y,t)= -a(y,t)y + b(y,t)

Substituting(9) ad (n) into (2)we get

s + b(yn+l, #+1)Atn+
n+l
Y

.k

Tk + a(yn+l,tn+l) Atn%

k-1 k-1

z

n+l
z

Atn+lj
where S =

k
,Tk= .r, .r=_.

jrjy 331
Notice that

and yn+l

for

‘1

it

of

A

1

(u)

(12)

= yn, T1 = 1. Forany orderwe see fixxn(12)that lim yn+l = b/a as
Lt+.

should,representtigthe quasiiteadystate solution~ = O.

This mthod has been applied to the numerical solution of systems

chemical kinetics equations, having the form

ii = ‘di(y~> ““” Y Y13 t) Yi+b(yl> ● ** > Y1, t) (i =1, 2, ‘** ,1)

n+l
predicto~correctormethodusing~ for the predictorand functional

iterationbased on (12)for the correctorhas provedsuccessfulfor the
..

casesk<2 (seeRef. 5). A new pgramwith k ~ 6 is currentlybeing

tested.

The principaladvantageof this formulationis its simplicity. The

same extrapolantsare used fm’ prediction,comection, interpolationand

controland are easilyupdatedrecursively. The chemicalkineticsprogram,
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in fact, consistsonly of ~s. (7), (10)and (12),althoughiterationby

Newton’smethodcouldbe used instead of (12). It is hoped to tie it at

least as efficientand accurateas the LLL (Hindmrsh) versionof Gear’s

pmgmn. 6

NOTE: This UCID is unchanged from the original UCIR-681 (Jauary 17, 1973)

except for the correction of minor errors.

- A. M. Winslow
oct. 2, 1980
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